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Cosmos++ : Relativisti
 Magnetohydrodynami
s on Unstru
tured Grids withLo
al Adaptive Re�nementPeter Anninos1, P. Chris Fragile2, and Jay D. Salmonson1LATEX-ed May 3, 2005 ABSTRACTA new 
ode and methodology are introdu
ed for solving the fully general relativisti
 mag-netohydrodynami
 (GRMHD) equations using time-expli
it, �nite-volume dis
retization. The
ode has options for solving the GRMHD equations using traditional arti�
ial-vis
osity (AV) ornon-os
illatory 
entral di�eren
e (NOCD) methods, or a new extended AV (eAV) s
heme usingarti�
ial-vis
osity together with a dual energy-
ux-
onserving formulation. The dual energy ap-proa
h allows for a

urate modeling of highly relativisti
 
ows at boost fa
tors well beyond whathas been a
hieved to date by standard arti�
ial vis
osity methods. It provides the bene�t ofGodunov methods in 
apturing high Lorentz boosted 
ows but without 
ompli
ated Riemannsolvers, and the advantages of traditional arti�
ial vis
osity methods in their speed and 
exibil-ity. Additionally, the GRMHD equations are solved on an unstru
tured grid that supports lo
aladaptive mesh re�nement using a fully threaded o
t-tree (in three dimensions) network to tra-verse the grid hierar
hy a
ross levels and immediate neighbors. A number of tests are presentedto demonstrate robustness of the numeri
al algorithms and adaptive mesh framework over a widespe
trum of problems, boosts, and astrophysi
al appli
ations, in
luding relativisti
 sho
k tubes,sho
k 
ollisions, magnetosoni
 sho
ks, Alfv�en wave propagation, blast waves, magnetized Bondi
ow, and the magneto-rotational instability in Kerr bla
k hole spa
etimes.Subje
t headings: hydrodynami
s | methods: numeri
al | MHD | relativity1. Introdu
tionMagnetohydrodynami
 (MHD) driven pro
esses in high-energy astrophysi
al environments 
an be ex-tremely diÆ
ult to model numeri
ally, espe
ially where 
ows are strongly trans-soni
, 
hara
teristi
 speedsapproa
h the speed of light, or nonlinear e�e
ts 
ouple over short temporal and large spatial dynami
alranges. For example, studies of phase transitions in the early universe (Fragile & Anninos 2003), and theformation of primordial magneti
 �elds and bla
k holes demand resolution a
ross many de
ades of s
ale tomodel phase intera
tions, wall dynami
s, and mi
rophysi
al 
oupling e�e
ts. Similarly, simulations of bla
khole a

retion 
ows (e.g. Fragile & Anninos 2005), thought to exist in quasars, a
tive gala
ti
 nu
lei, X-raybinaries, 
ore-
ollapse supernovae, and gamma-ray bursts, require stably evolving the GRMHD equationsin a strongly 
urved ba
kground spa
etime over many dynami
al s
ales. Addressing su
h problems requiresnumeri
al algorithms that are robust enough to simulate ultra-relativisti
 waves and sho
ks, and a

urateenough to treat various physi
al instabilities that 
an be seeded at very small amplitudes and frequen
ies1University of California,Lawren
e Livermore National Laboratory, Livermore CA 945502Department of Physi
s, University of California, Santa Barbara, CA 93106; fragile�physi
s.u
sb.edu



{ 2 {and yet a�e
t global solutions. We also desire algorithms that 
an 
apture the propagation of out
ows orhighly 
ompressed features beyond the limits imposed by single mesh simulations.A number of 
odes have been developed in re
ent years to solve both the spe
ial and general relativisti
MHD equations. Our approa
h is most similar to that taken by De Villiers & Hawley (2003a), whi
h is basedon an internal energy formulation with arti�
ial vis
osity (AV) for sho
k 
apturing and a method of 
hara
-teristi
s for the magneti
 �elds. However, other approa
hes in
lude the simpli�ed total variation diminishing(sTVD) method (Koide et al. 1999) and high order Godunov s
hemes (Gammie et al. 2003; Komissarov1999) based on fully 
onservative formulations of the MHD equations. Godunov methods are signi�
antlymore 
omplex than either the AV or sTVD s
hemes due to the Riemann solvers, but are 
onsidered morerobust for ultra-relativisti
 problems. Although vis
osity-based methods are generally a

urate, fast, simpleto implement, and easy to expand to in
lude multi-physi
s 
apabilities, they have histori
ally been limitedin their range of appli
ability to moderately relativisti
 
ows, with boost fa
tors less than a few.In this paper we des
ribe a new massively parallel, multi-dimensional numeri
al 
ode Cosmos++ withimproved (over traditional AV methods) sho
k 
apturing 
apabilities in the high boost regime and adaptivemesh re�nement (AMR), representing a signi�
ant advan
e over our previous numeri
al 
ode (Cosmos ,Anninos & Fragile 2003). Cosmos++ introdu
es a more 
omplex unstru
tured mesh system that allowsfor arbitrarily 
onne
ted hexahedral (quadrilateral in 2D) 
ells to 
onform to any boundary or shape. Italso allows for dentriti
-type zoning 
hara
teristi
 of re�ned grids at level interfa
es. Our AMR frameworkdi�ers from the more standard approa
h (Berger & Oliger 1984; Berger & Colella 1989) by re�ning indi-vidual 
ells rather than introdu
ing pat
hes of sub-grids 
omposed of multi-dimensional arrays of 
ells, thusproviding greater 
exibility in modeling 
omplex 
ows and greater eÆ
ien
y in positioning 
omputationalresour
es. This framework is similar to that des
ribed by Khokhlov (1998), but we generalize the method tounstru
tured meshes. Also, as in our prede
essor 
ode, several s
hemes have been implemented to solve thehydrodynami
al equations, in
luding both arti�
ial vis
osity and non-os
illatory 
entral di�eren
e (NOCD)methods. However, here we use dis
rete �nite-volume methods in pla
e of �nite di�eren
es due to the un-stru
tured nature of the grid. We also introdu
e in this paper a new dual energy pro
edure (eAV) thatallows 
onventional arti�
ial vis
osity methods to be extended and work robustly at arbitrarily high Lorentzfa
tors.The basi
 equations, numeri
al methods, and tests of the 
ode are des
ribed in the remaining se
tions.Although Cosmos++ supports many di�erent physi
s pa
kages in both 
ovariant Newtonian and generalrelativisti
 systems, in
luding 
hemi
al networks, 
ux-limited radiation di�usion, self-gravity, magneti
 �elds,and radiative 
ooling, only the GRMHD algorithms in the AMR framework are 
overed in this paper. TheNewtonian physi
s 
apabilities are 
urrently the same as those of Cosmos , whi
h were presented in Anninoset al. (2003) and Fragile et al. (2005). 2. Basi
 EquationsTwo separate formulations of the GRMHD equations are presented in this se
tion. The �rst formin
orporates an evolution equation for the internal energy that is appropriate for s
hemes using arti�
ialvis
osity methods for 
apturing sho
ks (Wilson 1972, 1979; Hawley et al. 1984). The se
ond form is deriveddire
tly from the primitive form of stress-energy 
onservation and is thus fully 
onservative and providesthe basis for the non-os
illatory 
entral di�eren
e s
hemes. We use the standard notation in whi
h 4(3)-dimensional tensor quantities are represented by Greek(Latin) indi
es.



{ 3 {For a perfe
t 
uid, the stress-energy tensor is generated from a linear sum of the hydrodynami
 T ��Hand magneti
 
ontributions T ��BT �� = T ��H + T ��B= �hu�u� + Pg�� + 14� �12g�� jjBjj2 + u�u� jjBjj2 �B�B�� (1)= (�h+ 2PB)u�u� + (P + PB) g�� � 14�B�B� ;where h = 1 + �+ P� + jjQjj� = 1 + ��+ jjQjj� (2)is the relativisti
 enthalpy, � is the spe
i�
 internal energy, P is the 
uid pressure, jjQjj is the bulk s
alar(arti�
ial) vis
osity, PB = jjBjj2=8� = g��B�B�=8� is the magneti
 pressure, and B� is the magneti
indu
tion in the rest frame of the 
uid. Also, u� is the 
ontravariant 4-velo
ity, g�� is the 4-metri
, and �is the adiabati
 index assuming an ideal gas equation of state P = (�� 1)��.2.1. Internal Energy FormulationThis method uses a form of the GRMHD equations similar to De Villiers & Hawley (2003a), derivedfrom velo
ity normalization u�u� = �1, baryon 
onservation r�(�u�) = 0, energy 
onservation u�r�T�� =0, momentum 
onservation (g�� + u�u�)r�T�� = 0, and magneti
 indu
tion r�(u�B� � B�u�) = 0.Nevertheless, it is worth expli
itly writing these equations out for 
larity, sin
e we employ a unique expansionand grouping of the terms in our numeri
al implementation. In 
ux-
onserving form, the evolution equationsfor mass, internal energy, momentum, and magneti
 indu
tion are:�tD + �i(DV i) = 0 ; (3)�tE + �i(EV i) = � (P + k _W jjQjj) �tW � �PÆji +Qji��j(WV i) ; (4)�tSj + �i(SjV i) = 14��t(p�gBjB0) + 14��i(p�gBjBi)+�S�S�2S0 � p�g8� B�B�� �jg�� �p�g �i((P + PB)Æij +Qij) ; (5)�tBj + �i(BjV i) = Bi�iV j + � �j(�iBi) ; (6)where g is the 4-metri
 determinant, Æij is the Krone
ker delta tensor, W = p�gu0 is the relativisti
 boostfa
tor, D =W� is the generalized 
uid density, V i = ui=u0 is the transport velo
ity, S� =W (�h+ 2PB)u�is the 
ovariant momentum density, E = We = W�� is the generalized internal energy density, Qij is thetensor arti�
ial vis
osity used for sho
k 
apturing, k _W is a swit
h used to a
tivate a vis
osity multiplier forthe �tW sour
e, and � is a 
oeÆ
ient related to the largest 
hara
teristi
 speed in the 
ow multiplying thedivergen
e 
leanser fun
tion. Noti
e there are two representations of the magneti
 �eld in these equations:B� is the rest frame magneti
 �eld 4-ve
tor de�ned in the stress tensor de�nition (1) andB� =W (B� �B0V �) (7)



{ 4 {is the divergen
e-free (�Bi=�xi = 0), spatial (B0 = 0) representation of the �eld. The time 
omponent ofthe magneti
 �eld B0 is re
overed from the orthogonality 
ondition B�u� = 0B0 = �g0iBi + gijBjV ig00 + g0iV i = � g0iBi + gijBjV iW (g00 + 2g0iV i + gijV iV j) (8)= BiSip�gW (�h+ 2PB) ; (9)and we use PB = 18�g��B�B� = 18� gijBiBjW 2 + 18� �B0p�gW �2 (10)to 
ompute the magneti
 pressure from the divergen
e-free �eld.We note that the term �i(p�gBjBi) in equation (5) 
an be 
ast into proje
ted and divergen
e 
om-ponents Bi�i(p�gBj) + p�gBj�iBi. The advantage of this form is that the method of 
hara
teristi
sdes
ribed by Stone et al. (1992) 
an be applied easily to the proje
ted 
omponent after generalizing the de�-nitions of density and momentum a

ounting for relativisti
 inertia and boost 
ontributions. This pro
edureis important for a
hieving stable simulations of sheared Alfv�en waves, as demonstrated in x4.2.1.Two additional sets of equations are needed for the transport velo
ity V i and boost fa
tor W . Thevelo
ity is derived from the 4-momentum normalization S�S� = W 2(�h+ 2PB)2u�u� = �W 2(�h+ 2PB)2,from whi
h we 
omputeS0 = �g0iSig00 + 1g00 h�g0iSi�2 � g00 �W 2 (�h+ 2PB)2 + gijSiSj�i1=2 ; (11)and then V i = Si=S0. A 
onvenient formula is derived for the boost fa
tor using u0 obtained from the4-velo
ity normalization written as u�u� = u0V �S�=(W (�h + 2PB)) = �1. The boost (W = p�gu0) isthen evaluated in one of two waysW = �p�g (�S�S�)1=2S�V � = p�g S0(�S�S�)1=2 ; (12)where V 0 = 1, S0 is 
omputed from the 4-momentum normalization des
ribed above, and the other �eldsare known from solutions to the evolution equations.2.2. Conservative Energy FormulationA se
ond 
lass of numeri
al methods presented in this paper are based on a 
onservative hyperboli
formulation of the GRMHD equations. It is the same approa
h used by Anninos & Fragile (2003), ex
epthere we in
lude magneti
 �elds. The equations are derived dire
tly from the 
onservation of stress-energyr�T�� = 0 and then de
omposed into spa
e and time 
omponents�t(p�g T 0�) + �i(p�g T i�) = �� ; (13)with 
urvature sour
e terms �� = �p�g T �
 ���
 : (14)



{ 5 {The form of the di�erential equations that we solve, derived after substituting the perfe
t 
uid stress tensor(1) into (13), are �tE + �i(EV i) + �iF 0i = �0 ; (15)�tSj + �i(SjV i) + �iF ij = �j ; (16)where we have expli
itly split o� the transport term from the other divergen
e 
ux 
ontributions F i�, de�nedas F i� = p�g �(gi� � g0�V i) (P + PB)� 14� (BiB� �B0B�V i)� : (17)The variables D, V i, and g are de�ned as in se
tion x2.1, andE = p�gT 00 = W 2p�g (�h+ 2PB) +p�g g00(P + PB)� 14�p�gB0B0 ; (18)Sj = p�gT 0j = W 2p�g (�h+ 2PB)V j +p�g g0j(P + PB)� 14�p�gB0Bj ; (19)(20)are the new expressions for energy and momentum. We also note that the divergen
e-free magneti
 indu
tionequation (6) 
an be written in the fully 
onservative form�tBj + �i(BjV i �BiV j) = � �j(�iBi) ; (21)as required by the 
entral di�eren
e s
hemes des
ribed in x3.2.It is 
onvenient to express E and Si in terms of the internal energy �elds E and S�E = W 2p�g �DW + � EW + 2PB�+p�g g00�(�� 1) EW + PB�� 14�p�gB0B0 ; (22)Sj = gj�S� +p�g g0j �(�� 1) EW + PB�� 14�p�gB0Bj : (23)The inverse energy relationEW =  Ep�gW 2 � DW � 2PB ��p�gW �2�g00PB � B0B04� �! 1� + (�� 1)g00(p�g=W )2 (24)is useful for 
omputing the 
uid pressure (P = (�� 1)E=W ), and for 
omparing relative errors in the dualenergy update pro
edure des
ribed in x3.3. Numeri
al MethodsCosmos++ is designed using obje
t-oriented prin
iples to 
reate abstra
tion 
lasses for ve
tor and tensor(both three and four dimensional) fun
tions on whi
h most mathemati
al operations are based. Cosmos++also takes advantage of the operator overload, inheritan
e, polymorphism and virtual methods features of theC++ language in its design of the zone, mesh, re�nement, physi
s, boundary 
ondition, data ex
hange, andoutput 
lasses. This simpli�es the user interfa
e 
onsiderably, redu
es the amount of 
oding, and allows forthe 
ode to be easily developed and expanded. All data stru
tures (mesh and �elds) are stored as ve
tor or



{ 6 {map 
ontainer 
lasses using the C++ Standard Template Library (STL) whi
h provides 
onvenient memorya

ess fun
tions and other useful support features (e.g., sorting, sear
hing) for intera
ting with the data.Multi-dimensional STL ve
tors are used as storage 
ontainers for pointers to zone obje
ts at ea
h re�nementlevel, whi
h in
lude all the �eld, 
ell and 
onne
tivity data as 
lass member attributes. STL maps providean eÆ
ient me
hanism to identify dire
t and inverse relations between zone iterators and unique global zoneidenti�
ations.The essential 
ell geometry used in 
onstru
ting meshes for Cosmos++ is a quadrilateral (hexahedral)shape in two (three) spatial dimensions. In order to provide enough 
exibility so individual 
ells 
an bearranged in an arbitrarily distorted and unstru
tured fashion, allowing even redu
ed or enhan
ed nodal
onne
tivities, we store a number of attributes for ea
h 
ell, in
luding node positions, inward (towards the
ell 
enter) pointing fa
e area normals, and zone volumes for 
onvenien
e. Ea
h zone also 
arries pointers toall of its neighbors sharing a 
ommon 
ell fa
e. Where a neighbor 
ell has been re�ned to a higher level, thepointer referen
es the neighbor's parent so that neighbors are always at or below the re�nement level of thereferen
ing 
ell and there is at most one neighbor for ea
h 
ell fa
e. The a
tual operational neighbors arefound by sele
ting the neighbor's appropriate 
hildren if they exist. Neighbor sear
hes are 
arried out ea
htime a re�nement 
y
le adjusts the mesh, and performed with lo
al tree s
ans by going up to the parent,a
ross to the neighbors, then down through the 
hild zone lists. This is done to allow greater 
exibilityand simpli
ity during the re�nement 
y
le in 
ase, for example, a 
ell and its neighbors are tagged for de-re�nement simultaneously. When a 
ell is re�ned, it is de
omposed into two, four or eight sub-
ells in one,two or three dimensions, and pointers to these newly allo
ated 
hild zones are stored in ordered 
ontiguousfashion for fast and easy referen
e. Ea
h 
hild zone, in turn, 
arries a pointer to its parent 
ell. As a result,all 
ells in the mesh are fully threaded with lo
al binary-, quad-, or o
t-tree parent-
hild hierar
hies andsemi-dire
t neighbor a

ess.Cosmos++ 
urrently supports several re�nement 
riteria, in
luding �eld value, normalized �eld gradient,normalized �eld 
urvature, mass, and Jeans mass. When either of the �eld, gradient, or 
urvature options aresele
ted, the user 
an spe
ify any stored variable upon whi
h to apply the 
riterion. Also, as an option, there�nement 
riterion 
an be 
omputed for either the evolved �elds or their 
onformal 
ounterparts (by dividingout the metri
 determinant), whi
h is useful to tra
k only 
ow (not metri
) features. Fields in newly 
reatedre�ned 
ells are re
onstru
ted by a linear, 
onservative, and monotoni
 interpolation of nearest neighbor andparent data.Numeri
al 
al
ulations are performed in the physi
s pa
kages only a
ross the list of leaf zones whi
hhave no 
hildren. The e�e
tive mesh is thus unstru
tured in general, 
omposed of many di�erent sized zones
ontaining any number of hanging nodes with redu
ed nodal 
onne
tivity. In order to a

omodate thesekinds of meshes (and even more general ones) we use �nite volume, in pla
e of �nite di�eren
e, methodsto solve the GRMHD di�erential equations. Simple derivatives are 
omputed using standard se
ond order(on uniform meshes) �nite volume dis
retization. Gradients of a generi
 ve
tor �eld Ti, for example, areevaluated by averaging the gradient fun
tion over a single 
ell 
ontrol volume and 
onverting the volumeintegral into a surfa
e summationGij � �jTi = 1Vz ZdV �jTi dV = � 1Vz I Ti dAj = � 1Vz fa
esXf (T �i Aj)f ; (25)where the summation is performed over all 
ell fa
es. Here Vz is the zone volume, Aj is the area ve
tor normalto the 
ell fa
e (f) pointing inwards toward the 
ell 
enter, T �i is the appropriately averaged (or upwinded)�eld value at the 
ell fa
es, and the gradient is returned as a tensor with rows (
olumns) representing the



{ 7 {ve
tor (gradient) dire
tions (in usual gradient index notation Gij = Ti;j). The negative sign in (25) is aresult of 
hoosing an inward pointing area ve
tor. Many of the gradient 
al
ulations appearing as sour
eterms in a typi
al time sequen
e update are 
omputed using a variation of the above expression. Some ofthe other, more spe
ialized, operations used in solving the GRMHD equations in the di�erent formalismsare des
ribed below. 3.1. AV Method3.1.1. Adve
tionAdve
tion is solved for ea
h evolved �eld quantity using a �rst (se
ond) order in time (spa
e) pro
edureand the s
alar divergen
e form of equation (25). Letting F represent any of the evolved �elds (D, E, Sj ,Bj), the dis
rete, �nite-volume representation of the transport sour
e follows from (25)�i(FV i) = � 1Vz fa
esXf (F� V i Ai)f ; (26)where Vz is the lo
al donor zone volume, (Ai)f is the inward pointing area normal ve
tor of fa
e f , and(V i)f is the fa
e-
entered velo
ity de�ned as a weighted average a
ross neighboring 
ells. The quantity (F�)frepresents �rst order zone-
entered �elds estimated at ea
h 
ell fa
e by a Taylor's expansion using limitedgradient extrapolants, F� = Fz + (�iF)Lz (ri � riz), proje
ted from the donor 
ell 
enter riz to either the fa
e
enter ri = rif or the adve
tion 
ontrol volume ri = rif � (�t=2)(V i)f , over a time-step interval �t.The zone-
entered limited gradient (�iF)Lz is 
onstrained to for
e monotoni
ity in the extrapolated�elds. In the 
ase of unstru
tured meshes, this is a
hieved by identifying three unique 
ontrol volumes whi
hwe assign as upstream, downstream, or average. The average 
ontrol volume is simply the total 
ell volume.Upstream and downstream volumes are 
onstru
ted from the sub-zonal tetrahedral (triangular) in 3D (2D)geometri
 elements 
omposed of node positions 
onne
ting a 
ell fa
e 
enter, one (two) zone nodes in 2D(3D), and the zone 
enter. A sub-zone asso
iated with the 
ell fa
e f is de�ned as upstream (downstream) ifthe sign of the ve
tor produ
t (AiV i)f is positive (negative). The total upstream and downstream volumesare the sum of the tetrahedral (triangular) sub-zones mat
hing the 
orresponding signature 
riteria. Gradientoperators are then 
omputed with (25) on ea
h of these unique, arbitrary polyhedral (polygonal) sub-volumes,as surfa
e integrals with appropriately averaged �elds at ea
h surfa
e element boundary. We denote thesegradients as �Ui F, �Di F, and �Ai F for the upstream, downstream, and average, respe
tively. To enfor
emonotoni
ity, the a
tual limited gradient (�iF)Lz is set to zero if the ve
tor produ
t of any 
ombination ofthe three gradient operators is negative. The gradient is limited further to various degrees of sharpness byde�ning the normalized s
alar �` = �ÙF=(�D̀F + �), for ea
h dire
tion ` and smallness parameter � � 1,and applying either of the minmod �` = max[0; min(1; �`)℄, van Leer �` = (j�`j+ �`)=(1+ j�`j), or superbee�` = max[min(1; 2�`); min(2; �`)℄ limiters, to derive the �nal expression for the zone-
entered limitedgradient 
omponents (�`F)Lz = �`�D̀F.An alternative, though somewhat more restri
tive and 
ostly, method that we have developed forapplying unstru
tured grid limiters on gradient fun
tions is based on modifying the magnitude of theaverage gradient with some fun
tion of the maximum (�max � max[j�Ui j; j�Di j; j�Ai j℄) and minimum(�min � min[j�Ui j; j�Di j; j�Ai j℄) of the three sub-zonal gradient magnitudes. For example,(�iF)Lz = � h (��max; (1� �)�min) �Ai Fj�Ai Fj+ � ; (27)



{ 8 {where � is a steepness parameter bounded by 0 � � � 1, h(:::) is any fun
tion of the arguments, and � is a 
o-eÆ
ient to enfor
e monotoni
ity in the extrapolated �eldF�f . In parti
ular, we set � = min(1; max(0; min(�1; �2))),where �1 = (max(0; Fz;n�Fz)Ff�Fz if Ff = Fz + (�iF)Lz (rif � riz)=� > max(Fz ;Fz;n)1 otherwise ; (28)and �2 = (min(0; Fz;n�Fz)Ff�Fz if Ff < min(Fz;Fz;n)1 otherwise ; (29)where Fz;n refers to the �eld value in the neighbor zone 
enter. The min/max operations in (28) and (29)are performed over ea
h of the fa
es in the donor 
ell, and � is 
hosen as the smallest value needed for stri
tmonotoni
ity a
ross all 
ell fa
es. 3.1.2. Arti�
ial Vis
osityWe have implemented �ve di�erent arti�
ial vis
osity options for sho
k 
apturing. All of these 
onstru
tshave a 
ommon inertia multiplier de�ned for relativisti
 MHD asI = D +E +W (P + jjQjj+ 2PB) : (30)The inertia is also normalized by a fa
tor IF that s
ales out the lo
al 3-geometry in 
urvilinear 
oordinates,and introdu
es a relativisti
 boost fa
tor to an arbitrary power that is useful for e�e
tively transforming thelength s
ale between proper and boosted frames, and providing a 
exible s
aling with boost. The normalizedinertia multiplier is thus de�ned asIN = IIF = (D +E +W (P + jjQjj+ 2PB) 1p
 �p�gW �n ; (31)where 
 is the 3-metri
 determinant, and n is an arbitrarily spe
i�able 
onstant.The simplest arti�
ial vis
osity we 
onsider is the s
alar form based on the work of von Neumann &Ri
htmyer (1950): Qij = (IN �l �kV k (kq �l �kV k � kl Cs)Æij if �iV i < 00 otherwise ; (32)where �l is the minimum 
ovariant zone length, Cs is the lo
al sound speed, and kq and kl are 
onstant
oeÆ
ients multiplying the quadrati
 and linear 
ontributions, respe
tively. This s
alar vis
osity remainsone of the most popular representations due to its simpli
ity and robustness; however, it is also the mostdi�usive of the methods we have implemented sin
e it indes
riminantly �lters out transverse, longitudinal,and sheared isotropi
ally averaged 
ompressive 
ows.A se
ond option for vis
osity is similar to (32) but is designed for anisotropi
 sho
k 
apturing along theprin
ipal grid axes similar to what is a
hieved in dire
tionally split, fully stru
tured mesh approa
hes:Qij = IN �l2 (kq �l �iV i � kl Cs) diag [�xV x � j�xV xj; �yV y � j�yV yj; �zV z � j�zV zj℄ ; (33)where diag[:::℄ refers to a list of the main diagonal elements of a tensor. This is generally less di�usive thanthe isotropi
 s
alar vis
osity option sin
e it is automati
ally disengaged along any grid dire
tion that is notundergoing 
ompression.
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alar vis
osity developed by White (1973), but extended here forrelativisti
 problems. De�ning the quantityeQ = �l j�iV ij1=2 jgij�iP �j(I �1N )j1=4 ; (34)this vis
osity 
an be written as Qij = IN eQ (kq eQ+ kl Cs)Æij (35)when both 
onditions, gij�iP �j(I �1N ) < 0 and �iV i < 0, are met. The advantage of (35) is that both pressureand velo
ity gradients are in
orporated into its de�nition, whi
h is a better indi
ation of the presen
e ofsho
ks than the velo
ity gradient by itself. It 
an therefore be more e�e
tive at suppressing arti�
ial heatingin regions undergoing adiabati
 
ompression.The �nal two options we 
onsider are genuine tensor vis
osities. The �rst of these is similar to Ts
har-nuter & Winkler (1979), but does not in
lude the full 
ovariant gradient treatment. However, sin
e thevelo
ity gradients are 
omputed in the 
onformal frame and the proper volume is a

ounted for in the inertianormalization, the version we have implementedQij = IN �l (kq �l �iV i � kl Cs) Sym��jV i � �iV i3 Æij� ; (36)where Sym(:::) denotes a symmetry operation, is a reasonable simpli�
ation. This tra
eless tensor vis
ositygenerally outperforms s
alar vis
osities in preserving geometri
 symmetries (e.g., spheri
ity), and suppressingvis
ous heating in homologous spheri
al 
ontra
tion.The last option we 
onsider is potentially the least di�usive, but also the most unstable or unpredi
tablemethod due to the matrix inversion operations needed to align the vis
osity 
al
ulation to the naturalprin
ipal axes of the sho
k frame. The sho
k orientation and velo
ity di�eren
es are determined by theeigenve
tors Rik(S) and eigenvalues �i(S) of the symmetrized strain rate tensor Sij = Sym(�jV i��iV i Æij=3).In this pro
edure the arti�
ial vis
osity is written asQij = Rik(S) bQkl Rlj(S)T ; (37)where Rlj(S)T is the transpose of Rik(S), bQkl is the usual von Neumann-Ri
htmyer vis
osity in the sho
kaligned frame where the vis
osity tensor has only diagonal elementsbQii = IN b�li �i(S) �kq b�li �i(S)� kl Cs� : (38)The sho
k-aligned length s
ales b�l are 
omputed in a similar fashion, also a

ounting for lo
al proper framemetri
 distortions, Mij = gij�xi�xj (assuming no index summation here). Representing the eigenvaluesand eigenve
tors of the matrix Mij as �i(M) and Rij(M), we de�ne the sho
k-aligned length s
ales as thediagonal elements of the transformed length s
ale tensor b�li = diag[b�lij ℄, whereb�lij = Ria(S)T Rab(M) q�b
(M) R
d(M)T Rdj(S) ; (39)and �b
(M) is the diagonal tensor of eigenvalues �i(M). This expression e�e
tively transforms the prin
ipallength s
ales �i(M) to the grid axes, then to the prin
ipal frame of the strain rate tensor.Be
ause the basi
 strain rate tensor (and espe
ially velo
ity divergen
e) does not always distinguishbetween dis
ontinuous sho
ks and smooth 
ompressive 
ows, it is sometimes ne
essary to be more sele
tiveabout where arti�
ial vis
osity is applied. As an option we 
an modify the strain rate tensor as�iV j ) �iV j � kL �Li V j ; (40)



{ 10 {where kL is a 
onstant less than unity (typi
ally 0.5), and �Li is a limited gradient. This e�e
tively redu
esthe vis
osity levels over smooth 
ows where the limiter has no a�e
t, while keeping it strongly a
tive oversho
ks where the limited gradient vanishes. In this 
ase we use a hard limiter and set �Li V j = 0 if any ofthe velo
ity or velo
ity gradient 
omponents have opposite signs a
ross any of the nearest neighbor zones.If both the velo
ity and its gradient are monotoni
 in the lo
al neighbor pat
h, we set �Li V j = �iV j .3.2. NOCD MethodWe take a slightly di�erent and signi�
antly simpler approa
h in this paper to solving the fully 
on-servative system of equations des
ribed in x2.2 than the Riemann-free method we implemented in Cosmos(Anninos & Fragile 2003). This approa
h, developed by Kurganov & Tadmor (2000), is also part of theNOCD family of solutions, but we �nd it to be generally less di�usive and less sensitive to Courant restri
-tions.The 
urvature sour
es in equations (15) and (16) are updated using se
ond order �nite volume dis-
retization, and a �rst order in time Euler advan
e method. The divergen
e terms in (15), (16) and (21) areupdated in time from un to un+1 using a general Nth order method 
onsisting of a sequen
e of �rst orderEuler steps (Shu & Osher 1988). Writing the time update in terms of forward Euler templates, high ordertime solutions 
an be expressed asu(1) = un +�tnS(un) ;u(m+1) = �mun + (1� �m)(u(m) +�tn S(u(m))) ; (41)un+1 = uk ;for ordered sequen
es m = 1; 2; :::; k � 1 up to k steps, an arbitrary sour
e term S(u), and 
onstantparameters � = ((1=2; �) ; 2nd order(3=4; 1=3) ; 3rd order : (42)At �rst order, �m is not used sin
e that redu
es to a simple, single-step forward Euler solver. The timeupdate is thus 
onveniently solved as a sequen
e of �rst order Euler 
y
les, and is easily extended to higherorder using these simple pres
riptions.In semi-dis
rete form, the single-step solution to a general nonlinear 
onve
tion equation for a general�eld !, representing the energy (15), momentum (16), or indu
tion (21) equations, is written in �nite volumeform as �t! = ��iF i(!) = 1Vz fa
esXf �12 �F if (!�f ) + F if (!+f )� (Ai)f � af2 �!�f � !+f � jjAf jj� ; (43)where F i are the numeri
al 
uxes, af = max(a+f ; a�f ) is the maximum lo
al propagation speed, and !�f =!� + (�i!)L� (rif � ri�) are the limited gradient proje
tions of the 
ell-
entered �eld !� to the 
ell fa
es.The subs
ripts � refer to either the donor 
ell 
enter (�) or the opposite zone (+) a
ross fa
e f , and thesupers
ripts � refer to the fa
e 
entered proje
tions of the �eld originating from the 
orresponding zone. Inthis approa
h, the transport terms are grouped together with the other 
uxes, and the dis
rete solution (43)is applied to all divergen
e sour
e terms (transport in
luded) simultaneously.



{ 11 {3.3. Extended AV MethodThe basi
 internal energy formulation with arti�
ial vis
osity 
an be expanded easily to in
lude anadditional equation for the 
onserved energy in the form (15). The general idea in this dual energy approa
his to extra
t the thermal 
omponent from the total energy, and depending on the a

ura
y of the result, useit to over-write the solution 
omputed dire
tly from the internal energy evolution equation. However, 
aremust be used when extra
ting the internal energy, sin
e it is often the 
ase that adiabats in total energy
onserving methods 
an be grossly mis
al
ulated.In this s
heme, the total energy is used as an option to 
ompute the four-momentum normalization atvarious stages of the solve sequen
e, as well as the inertia for the arti�
ial vis
osity when 
ertain 
onditionsare met. De�ning ED as the non-thermal or \dynami
al" 
omponent of the 
onservative energy,ED = DWp�g + 2PBW 2p�g +p�g�g00PB � B0B04� � ; (44)we write eE = (E � ED)p�g W�W 2 + (�� 1)g00(p�g)2 ; (45)for the internal energy extra
ted from the 
onserved energy �eld, andI = W (�h+ 2PB) = D +E +W (P + jjQjj+ 2PB)= p�gW �E �p�gg00(P + PB) + 14�p�gB0B0� (46)for the inertia and momentum normalization.Also, an additional term is added to the total energy evolution equation that a

ounts for 
ollisionaldissipation heating arising from the arti�
ial vis
osity. The 
onservative energy equation that we solve takesthe general form �tE + �i �EV i�+ �i �F i� = �0 ; (47)where the 
ux F i is now de�ned asF i = p�g �(g0j � g00V j) ((P + PB)Æij +Qij)� 14� (BiB0 �B0B0V i)� : (48)Although we use essentially the same equation for energy (apart from Qij) as the NOCD method des
ribedin the previous se
tion, we solve it using a di�erent, more 
onventional operator split approa
h. Here wesolve sequentially for 
urvature e�e
ts (�tE = �0), followed by the transport sour
e (�tE + �i(EV i) = 0)whi
h is updated syn
hronously with the momentum, internal energy, and magneti
 indu
tion adve
tion,then �nally we apply se
ond order �nite volume dis
retization to evaluate the remaining 
ux divergen
eterm (�tE + �iF i = 0).The �nal step in this extended s
heme is to determine whether the total energy solution is known wellenough to extra
t a

urately the internal energy. We use for a measure of a

ura
y, the minimal di�eren
eratio �ÆEE �min � min[E h(�); max(��
oorWh(�); eE h(�))℄Nmax(E)N ; (49)where h(�) = �W 2 + (�� 1)g00(p�g)2p�g W ; (50)



{ 12 {��
oor is the minimum allowable energy density threshold, and the subs
ript N refers to extending lo
alminimum and maximum 
al
ulations to in
lude all neighbor zones, adding an extra measure of safety. A
ommon problem with total energy s
hemes in general is that numeri
al trun
ation errors 
an a

umulate tothe point that the sum of di�erent physi
al 
ontributions often ex
eeds the total energy (ED > E), espe
iallyin kinemati
 or magneti
 �eld dominated 
ows, and in the vi
inity of strong sho
ks. This problem is avoidedby for
ing a minimum threshold on either E or eE to guarantee positivity, and by preserving the solutionfrom the internal energy equation whenever ED � E , or (ÆE=E)min � Æ
, where Æ
 is a user de�ned parameterlarge enough to prevent numeri
al noise from 
orrupting the solution. The internal energy is otherwise setto E = max(�
oorW; eE) when (ÆE=E)min > Æ
 and the extra
ted thermal 
omponent 
an be trusted.4. Code Tests4.1. Hydrodynami
s4.1.1. Sho
k TubeWe begin testing with one of the standard problems in 
uid dynami
s, the sho
k tube, in whi
h twodi�erent 
uid states are initially separated by a membrane. At t = 0 the membrane is removed and the
uid evolves in su
h a way that �ve distin
t regions appear in the 
ow: an undisturbed region at ea
h end,separated by a rarefa
tion wave, a 
onta
t dis
ontinuity, and a sho
k wave. Although this problem only
he
ks the hydrodynami
 elements of the 
ode, as it assumes a 
at ba
kground metri
 and ignores magneti
�elds (magnetosoni
 sho
ks will be 
onsidered in x4.2), it is still useful for evaluating the sho
k-
apturingproperties of the di�erent methods. We 
onsider the high boost (W = 3:59, � = 5=3) 
ase from Anninos &Fragile (2003). The initial state is spe
i�ed as �L = 1, PL = 103, VL = 0 to the left of the membrane and�R = 1, PR = 10�2, VR = 0 to the right. The membrane is lo
ated at x = 0:5 on a grid of unit length.The results presented here are run using the s
alar arti�
ial vis
osity with a quadrati
 vis
osity 
oeÆ
ientkq = 2:0, linear vis
osity 
oeÆ
ient kl = 0:3, Courant fa
tor k
fl = 0:3, vis
osity multipier k _W = 0, andare 
arried out on �xed, uniform grids of di�ering resolutions in order to establish the 
onvergen
e of ea
hmethod. Figures 1, 2, and 3 show spatial pro�les of the results at time t = 0:36 on a grid of 800 zones usingthe AV, eAV, and NOCD methods, respe
tively. Table 1 summarizes the errors in the primitive variables�, P , and V for four di�erent grid resolutions (400, 800, 1600, and 3200 zones) and the three di�erentCFD methods (AV, eAV, and NOCD) using the L-1 norm (i.e., kE(a)k1 =Pi;j;k�xi�yj�zkjani;j;k�Ani;j;kj,where ani;j;k and Ani;j;k are the numeri
al and exa
t solutions, respe
tively, and for one-dimensional problemsthe orthogonal grid spa
ings are set to unity). All three methods 
onverge at approximately �rst order asexpe
ted for this 
lass of problem, and the errors are 
onsistent with those reported for our previous 
ode(Anninos & Fragile 2003). 4.1.2. Sho
k CollisionA se
ond test presented here is the wall sho
k problem involving the sho
k heating of 
old 
uid hittinga wall at the left boundary (x = 0) of a unit grid domain. The initial data are set up to be uniform a
rossthe grid with adiabati
 index � = 4=3, pre-sho
ked density �1 = 1, pre-sho
ked pressure P1 = (��1)�10�8,and velo
ity V1 = �vinit. When the 
uid hits the wall a sho
k forms and travels to the right, separating the
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Fig. 1.| Results at time t = 0:36 for the sho
k tube test using arti�
ial vis
osity (AV) and 800 zones. Thedata points in this plot have been sampled to redu
e over
rowding. Only 400 points are shown. The solidline shows the analyti
 solution.initial pre-sho
ked 
onditions from the post-sho
ked state (�2; P2; V2) with solution in the wall frameVS = �1W1V1�2 � �1W1 ; (51)P2 = �2(�� 1)(W1 � 1); (52)�2 = �1 �� + 1�� 1 + ��� 1(W1 � 1)� ; (53)where VS is the velo
ity of the sho
k front, and the pre-sho
ked energy and post-sho
ked velo
ity are bothassumed negligible (�1; V2) ! 0. All of the results in this se
tion are performed on a 200 zone uniformly-spa
ed mesh and run to a �nal time of t = 2:0. For the AV and eAV methods, we use the s
alar vis
ositywith kq = 2:0 and kl = 0:7. The Courant fa
tor is set to k
fl = 0:3 for all methods.Figure 4 plots the mean-relative errors in density, whi
h are generally greater than errors in either thepressure or velo
ity, as a fun
tion of boost fa
tor. Although we are not able to extend the AV method
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Fig. 2.| As Figure 1 but with the extended vis
osity (eAV) s
heme.reliably (whi
h we de�ne by a 10% mean error threshold and in
reased sensitivity to vis
osity parameters)beyond vinit � 0:95, the eAV and NOCD methods are substantially more robust. As shown in Figure 5,both methods 
an be run up to arbitrarily high boost fa
tors (vinit > 0:99999) with mean relative errorstypi
ally remaining below 2% with no signi�
ant in
reasing trend. As noted previously (Anninos & Fragile2003), the errors for the AV method 
an be improved signi�
antly by either lowering the Courant fa
toror in
reasing the vis
osity 
oeÆ
ients. However, the sensitive dependen
e on these parameters detra
ts
onsiderably from the attra
tiveness of this method for this 
lass of problem. The errors for the eAV method
an also be improved by adjusting the vis
osity 
oeÆ
ients, although we �nd that it performs well even withthe \standard" values used here. 4.1.3. Boosted Sho
k CollisionAn elaboration of the wall sho
k problem from the previous se
tion is the 
ollision of two boosted
uids. The 
uids 
ow toward ea
h other and 
ollide, ea
h sho
king against the other and forming a 
onta
t
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Fig. 3.| As Figure 1 but with the non-os
illatory 
entral di�eren
e (NOCD) s
heme.dis
ontinuity. In the 
enter-of-momentum frame, in whi
h the 
onta
t dis
ontinuity between the 
uidsis stationary, this system is equivalent to a pair of opposing wall sho
ks, ea
h impinging on the other.However, by boosting this system's 
enter-of-momentum frame with respe
t to the grid frame, one devises avery rigorous test of the Lorentz invarian
e of the 
ode under nonsymmetri
 
onditions, with multiple jumpdis
ontinuities and highly relativisti
 sho
k velo
ities.In the 
enter-of-momentum (primed) frame, a 
uid with initial state (�1; P1; V 01 > 0) 
ows from theleft boundary while a 
uid of state (�4; P4; V 04 < 0) 
ows from the right; we assume ea
h 
uid is 
old:P1 = P4 = 0. Upon 
ollision, 
uid 1 is sho
ked into a state (�2; P2; V 02) while 
uid 4 is sho
ked into state(�3; P3; V 03), where the 
uids are numbered sequentially from left to right. In this frame, ea
h sho
ked 
uid
omes to rest; V 02 = V 03 = 0. This implies for
e equilibrium between these 
uids; P2 = P3. Using equations(52) and (53), pressure balan
e gives�1(�W 01 + 1)(W 01 � 1) = �4(�W 04 + 1)(W 04 � 1) : (54)
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ked fuids (from eqn. 53) are�2 = �1�W 01 + 1�� 1 (55)�3 = �4�W 04 + 1�� 1 ; (56)and the spe
i�
 energies are (e.g. Hawley et al. 1984)�2 = W 01 � 1 (57)�3 = W 04 � 1 : (58)Pressure balan
e again implies �2�2 = �3�3. Also, from equation (51) the reverse sho
k velo
ity, V 0r , betweenmaterials 1 and 2, and the forward sho
k velo
ity, V 0f , between 
uids 3 and 4 are expressed asV 0r = � (W 01 � 1)(�� 1)W 01V 01 (59)V 0f = � (W 04 � 1)(�� 1)W 04V 04 : (60)Typi
ally the grid (lab frame) velo
ities V1 and V4 are known and the velo
ity of the 
enter-of-momentumframe and 
onta
t dis
ontinuity, Vd, must be solved for numeri
ally by substituting the boost transformationsW 01 =WdW1(1� V1Vd) ; W 04 =WdW4(1 + V4Vd) (61)into equation (54), where Wi = (1 � V 2i )�1=2. The system 
an also be boosted into a desired frame bystandard velo
ity addition.Figures 6, 7 & 8 
ompare the analyti
 and numeri
al solutions, using the eAV method, for three examplesof boosted 
ollisions. We �nd very good agreement to the solutions (Table 2) when the opposing primed-framemomenta of ea
h 
uid is symmetri
 (Figure 6), asymmetri
 (Figure 7) and for a more extreme relativisti

ase with Lorentz fa
tors of about 100 (Figure 8). Fra
tional errors for density in the sho
ked region aretypi
ally ��=� � 10�4 while both proper energy and boost fa
tor fra
tional errors are of order 10�5. Thetail in mass density on the downwind (right hand) side of the sho
ked region is a small proportion (3% forFigures 6 & 7 and 1% for Figure 8) of the total sho
ked mass and 
onverges to zero with in
reased zoning.The NOCD method also gives good agreement, but tends to be slightly more di�usive, with a larger masstail on the trailing sho
k. In the most extreme relativisti
 
ase, shown in Figure 8, the numeri
al resultsare slightly behind (to the right of) the analyti
al solution, 
orresponding to temporal delay in the onset ofthe numeri
al sho
k of �t � 10�4. These highly relativisti
 sho
ks require very �ne zoning and thus AMRis extensively used in order that these runs be 
omputationally feasible. Up to 12 levels of re�nement areused in the highest boost test. In these examples a simple density threshold is used, above whi
h re�nementis triggered; however, more 
omplex (and eÆ
ient) triggering methods su
h as dis
ussed in the next se
tionhave also been su

essfully employed. 4.1.4. Blast WavesA further appli
ation of the ultra-relativisti
 
apabilities of the eAV and NOCD methods demonstratedin the previous se
tion and one that is of parti
ular astrophysi
al signi�
an
e is the relativisti
 blastwave.
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h like its Newtonian 
ounterpart, the Sedov-Taylor blastwave (e.g. Landau & Lifshitz 1959), there isa self-similar analyti
al solution for the ultra-relativisti
 blastwave, �rst des
ribed by Blandford & M
Kee(1976).The analyti
al solution of Blandford &M
Kee (1976) depends on the initial total energy in the blastwave,EBM, the Lorentz fa
tor with whi
h its sho
k front initially expands, 
BM, and the ambient density, �BM,into whi
h it expands. From these one 
an de�ne an initial radius of the blastwaverBM � � 17EBM8�
2BM�BM�1=3 : (62)The solution for radii, 0 < r < rBM, is based on the similarity variable�(r) � 1 + 8
2BM(1� r=rBM) : (63)The 
oordinate density and energy, as used by Cosmos++ , and the Lorentz fa
tor areD(r) = 2p�g�BM
2BM�(r)�7=4 (64)E(r) = p�g�BM
2BM(p2
BM�(r)�23=12 � 2�(r)�7=4) (65)
(r) = s1 + 
2BM2�(r) (66)where we have interpreted equation (29) of Blandford & M
Kee (1976) as the radial 
omponent of the4-velo
ity in order that 
 � 1. For all r > rBM, D(r) = p�g�BM, 
(r) = 1 and the energy is set to anumeri
ally insigni�
ant value, typi
ally E(r) = 10�4D(r).The relativisti
 blastwave is 
hara
terized by a very thin, �r / rBM=(8
2BM) [eqn. 63℄, shell of matterand energy rapidly expanding into an external medium. Very �ne zoning is required to resolve the shell, whilerelatively few zones are ne
essary in the va
uous bubble en
losed by the shell or the external medium. Thusthis problem is ideally suited for adaptive mesh re�nement. For example, a blastwave with an initial Lorentzfa
tor of 
BM = 10 would require 800 zones a
ross its radius just to ensure that the shell is represented bya single zone. Be
ause of the steep gradients behind the sho
k, to resolve the shell requires fres � 100 timesas many zones, whi
h be
omes a large 
omputational problem. This is 
ompounded by the fa
t that typi
alsimulations evolve the blastwave over distan
es / rBM, thus requiring about rBM=�r � rBMfres=(k
fl�t) �800fres=k
fl � 106 time steps, where k
fl is the Courant fa
tor. For 
BM > 10, stability typi
ally requiresk
fl � 0:1. Therefore adaptive mesh re�nement, with zones 
on
entrated into the shell, is a pra
ti
alne
essity for relativisti
 blastwaves.The relativisti
 blastwave, with its thin shell, steep gradients, and sharp 
usp at the sho
k front, is
hallenging to simulate. The method developed for these problems is to re�ne a zone if any of three 
riteriaare met: First, all zones for whi
h the density � > fthresh�max are re�ned to the fullest allowable extent,where typi
ally fthresh = 0:9. This 
ondition is required to keep the 
usp at the sho
k front as resolved aspossible. Se
ond, the normalized derivative of the proper density �eld, (�x=�)r�, must remain below athreshold, where �x is the zone size and � is the average value. This is e�e
tive at maintaining the steepgradient behind the sho
k. Finally, the normalized 
urvature of this �eld, �xjr2�j=jr�j, must remain belowa maximum threshold. This 
ondition puts zones ahead of the advan
ing sho
k due to the high 
urvatureat the sho
k dis
ontinuity, and also smooths the regions tagged by slope. If � < fthresh�max and bothnormalized slope and 
urvature of a zone fall below their respe
tive thresholds, then that zone is tagged fordere�nement.



{ 18 {As shown in Figure 9, Cosmos++ is able to evolve a blastwave with EBM = 1051 ergs from an initialLorentz fa
tor of 
BM = 30 to a non-relativisti
 blastwave. Su
h a simulation is demanding, requiring � 106
y
les to evolve the relativisti
 phase. This simulation is evolved on a base mesh of 100 zones with initially17 levels of allowed re�nement. The number of allowed re�nement levels is periodi
ally de
remented ninetimes as the blastwave de
elerates and broadens. Thus only eight levels of re�nement are employed duringthe non-relativisti
 phase. As a result, the time step during the �nal non-relativisti
 phase is 210 � 1000times larger than the initial timestep.Figure 10 shows the self-similarity of the relativisti
 and non-relativisti
 phases of the blastwave evolutionby s
aling and super-imposing several density pro�les for ea
h phase. One 
an see ex
ellent agreement withthe analyti
al solution in both 
ases. For the relativisti
 phase, the eAV method (shown in the left plot)tends to more robustly evolve the analyti
al solution, with less sensitivity to time step or AMR re�nementpres
riptions. However, the NOCD method (shown in the right plot) more reliably transitions to the non-relativisti
 limit; for instan
e 
apturing the sho
k dis
ontinuity in density with � 1 % a

ura
y as opposed to� 10 % a

ura
y for the eAV method. This might be due to the enfor
ed energy 
onservation of the NOCDmethod. The eAV method typi
ally only loses 1 { 2% of the total energy over the 
ourse of the evolution,but this may o

ur primarily in the sho
ked shell, thus 
ausing a slight drift in the solution.4.2. Magnetohydrodynami
s4.2.1. Alfv�en Wave PropagationThe 
lass of linear Alfv�en waves des
ribed by De Villiers & Hawley (2003a) provide an ex
ellent testof the method of 
hara
teristi
s for magneti
 �elds subje
t to transverse or shearing mode perturbations.Considering a general wave fun
tion f(x � v�A t), solutions to the linear perturbation equation with a �xedba
kground �eld Bx and 
onstant velo
ity V x in Minkowski spa
etime yields for the transverse 
omponentsV y(x; t) = �1� ��2 � f(x� v�A t) +�1 + ��2 � f(x� v+At) ; (67)By(x; t) = �2 �f(x� v�A t)� f(x� v+A t)� ; (68)with parameters � = Bx(1 + �2)�p�2 +W�2 ; �2 = jjBjj24��hW 2 ; � = � �2V xBx(1 + �2) ; � = 8�PjjBjj2 ; (69)and Alfv�en speedv�A = V x � �p�2 +W�21 + �2 �!V x=0 s jjBjj24��h+ jjBjj2 =s 2(�� 1)��(1 + ��) + 2(�� 1)� : (70)We 
onsider two 
ases of linear Alfv�en waves: a stationary ba
kground (V x = 0, 
ase A) in whi
h the pulsestravel in opposite dire
tions with equal amplitudes, and a moving ba
kground (V x = 0:1
, 
ase B) wherethe pulses split into asymmetri
al waves. These two 
ases 
orrespond to Models ALF1 and ALF3 of DeVilliers & Hawley (2003a). In both 
ases, the 
uid is initialized with a uniform density � = 1, spe
i�
 energy� = 10�2, and adiabati
 index � = 5=3. The transverse magneti
 �eld 
omponents (By = Bz) are initiallyzero. The longitudinal magneti
 �eld 
omponent (Bx) is set by our 
hoi
e of � (� = 0:001 for 
ase A and



{ 19 {0.01 for 
ase B). The transverse velo
ity is initialized with a square pulse: V y = 10�3 for 1 < x < 1:5,V y = �10�3 for 1:5 � x < 2, and zero elsewhere. The problem is run on a grid 3 units in length.For 
ase A, the Alfv�en velo
ities are jv�A j = 0:963 (W = 3:76); for 
ase B, v+A = 0:792 (W+ = 1:64) andv�A = �0:705 (W� = 1:41). Figure 11 shows the numeri
al results for the arti�
ial vis
osity (AV) method ona grid with 1024 zones overlaid with the analyti
 solution. The eAV method gives identi
al results for thistest and is not shown. The errors in the plateaus for the stationary ba
kground 
ase (
ase A) are extremelysmall (< 0:005%); for the moving ba
kground (
ase B), the errors are somewhat larger, though still quitesmall (< 0:1%) 4.2.2. Magnetosoni
 Sho
k TubeNext we perform another set of numeri
al sho
k tube tests, this time in
luding magneti
 �elds. Similarto the hydrodynami
 sho
k tube test, these problems 
ombine strong sho
ks and rarefa
tion features, thusfully stressing the 
ode in the limit of 
at spa
e. We initialize two versions of this test, both from Komissarov(1999). In the �rst test, the initial state is spe
i�ed as �L = 1, PL = 103, VL = 0, BxL = 1, ByL = BzL = 0 tothe left of the membrane and �R = 0:1, PR = 1, VR = 0, BxR = 1, ByR = BzR = 0 to the right. Note that sin
ethe magneti
 �eld in this 
ase is parallel to the 
ow and 
ontinuous a
ross the dis
ontinuity, it should notplay a dynami
al role. In this sense, the problem is really a hydrodynami
al sho
k tube similar to the one
onsidered in x4.1.1. Nevertheless, this test appears frequently in the literature and is worth reprodu
ing hereto 
on�rm 
onsisten
y in the MHD solver. For the se
ond test, the initial state is �L = 1, PL = 30, VL = 0,ByL = 20, BxL = BzL = 0 to the left of the membrane and �R = 0:1, PR = 1, VR = 0, BxR = ByR = BzR = 0to the right. Here, the initial dis
ontinuity of the �eld allows it to play a dynami
al role in the rarefa
tionand 
onta
t wave regions. These tests are run using the s
alar arti�
ial vis
osity with a quadrati
 vis
osity
oeÆ
ient kq = 2:0, Courant fa
tor k
fl = 0:3, and are evolved on �xed, uniform grids. Case 1 uses a linearvis
osity 
oeÆ
ient kl = 0:3, whereas 
ase 2 does not use the linear term (kl = 0). We do not 
al
ulate theanalyti
 solutions for these tests, although a dire
t 
omparison 
an be made between our Figures 12, 13, and14, and Figure 6 of Komissarov (1999) sin
e we use the same resolution (400 and 500 zones for sho
k tubes1 and 2, respe
tively) as that work. We point out that our di�erent methodologies all give similar resultsas the Godunov-type s
heme used in Komissarov (1999), showing many of the same pathologies (the smallpost-sho
k features in sho
k tube 1 and the kink at the rarefa
tion edge in sho
k tube 2), although our AVand eAV methods appear to do better at 
apturing the density plateau in the Lorentz-
ontra
ted shell ofmaterial immediately behind the sho
k. 4.2.3. Bondi FlowAs a test of hydrodynami
 and MHD 
ows in spa
etimes with nontrivial 
urvature, we �rst 
onsiderradial a

retion onto a 
ompa
t, strongly gravitating obje
t, in this 
ase a S
hwarzs
hild bla
k hole. Theanalyti
 solution (Mi
hel 1972) is 
hara
terized by a 
riti
al point in the 
ow as(ur
)2 = M=2r
 ; (71)V 2
 = (ur
)2=[1� 3(ur
)2℄ = (1 + n)T
n[1 + (1 + n)T
℄ ; (72)where ur is the radial 
omponent of the 
uid 4-velo
ity, V
 is the sound speed at the 
riti
al point, M is themass of the bla
k hole, n = 1=(�� 1) is the polytropi
 index, and T = P=�. The remainder of the 
ow is
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ribed through the equations Tnurr2 = C1 ; (73)[1 + (1 + n)T ℄2 �1� 2Mr + (ur)2� = C2 : (74)Following Hawley et al. (1984), we �x C1 and C2 by 
hoosing the 
riti
al radius of the solution r
 = 8GM=
2and �xing � = 4=3. We also �x the density at the 
riti
al radius (�
) su
h that _M = 4�r2
�
ur
 = �1.The physi
al domain of our simulation extends from r = 0:98rBH to r = 20GM=
2, where rBH =2GM=
2 is the radius of the bla
k-hole horizon. Here we use Kerr-S
hild 
oordinates, whi
h allow us to pla
ethe inner boundary of the 
omputational domain inside the horizon. The radial 
oordinate is repla
ed by alogarithmi
 
oordinate � = 1+ ln(r=rBH ), and the problem is evolved over a time interval �t = 100GM=
3.We measure the 
onvergen
e of our solution at four di�erent resolutions (32, 64, 128, and 256 zones) usingthe one-dimensional L-1 norm of �. For 256 zones, the respe
tive errors for the AV, eAV, and NOCD methodsare 1:14 � 10�3, 1:08 � 10�3, and 4:66 � 10�4. The 
onvergen
e rates are between �rst and se
ond order:1.3, 1.4, and 1.4 for the AV, eAV, and NOCD methods, respe
tively. These rates are generally 
onsistentwith the 
onvergen
e reported by De Villiers & Hawley (2003a).We 
an extend this test to the GRMHD regime by adding a radial magneti
 �eld. In
lusion of su
ha �eld (satisfying �rBr = 0) does not alter the analyti
 solution for any of the primitive �elds (�, P , orur), yet it serves as a non-trivial numeri
al test of the magneti
 �eld terms in the 
ode. The magnitudeof the magneti
 �eld is set by jjB2jj=(4��) = 10:56 (� � 1) at r = r
. With magneti
 �elds in
luded, themagnitudes of the errors in
rease to 3:89�10�3 and 1:36�10�3 for the AV and eAV methods with 256 zones,but the 
onvergen
e rates remain the same - 1.3 and 1.4, respe
tively. We note that the divergen
e error inthe magneti
 �eld does not build up appre
iably during the 
ourse of these runs - P j�iBij . 10�14 in all
ases. Sin
e we intend primarily to use either the AV or eAV methods for this type of resear
h appli
ation,we have not extended the NOCD algorithm to a

ount for the proper 
hara
teristi
 magnetohydrodynami
speed in arbitrarily 
urved spa
etimes, so we do not report results from that method in this or the followingse
tion. 4.2.4. Magnetized Bla
k Hole TorusNext we 
onsider the astrophysi
ally interesting problem of a magnetized torus of gas orbiting a rotatingbla
k hole. Although there is no known analyti
 solution for this problem, it is suÆ
iently well do
umentedin the literature to serve as a useful test of the 
ode. It also represents one 
lass of problems for whi
hCosmos ++ is intended to be used. We set this problem up using the same parameters as model SFP-2Dof De Villiers & Hawley (2003b); spe
i�
ally, the spin of the bla
k hole is a=M = 0:9, the spe
i�
 angularmomentum of the torus is l=M = 4:3, the surfa
e potential of the torus is (ut)in = �0:98, and the equation ofstate of the gas is set by the polytropi
 
onstant � = 0:01 and index � = 5=3. To this torus we add initiallyweak poloidal magneti
 �eld loops to seed the magneto-rotational instability (MRI, Balbus & Hawley 1991).The initial magneti
 �eld ve
tor potential is (De Villiers & Hawley 2003a)A� = � k(�� �
ut) for � � �
ut ;0 for � < �
ut : (75)The non-zero spatial magneti
 �eld 
omponents are then Br = ���A� and B� = �rA�. These poloidal �eldloops 
oin
ide with the isodensity 
ontours of the torus. The parameter �
ut = 0:5��max is used to keep the
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e inside the surfa
e of the torus. The initial setup of the torus is illustrated in Figure15(a), whi
h shows a plot of the logarithm of �. Using the 
onstant k in equation (75), the �eld is normalizedsu
h that initially � = P=(jjBjj2=8�) � �0 = 2 throughout the torus. This initialization is slightly di�erentthan De Villiers & Hawley (2003b), who use a volume integrated � to set the �eld strength; the di�eren
eis su
h that �0 = 100 in their work is roughly 
omparable to �0 = 2 here.For these tests, we only 
onsider two-dimensional, axisymmetri
 simulations using our AV method. Inlater appli
ations, we will employ the full three-dimensional 
apability of Cosmos ++. This simulation usesa logarithmi
 radial 
oordinate of the form � = 1 + ln(r=rBH ) and a 
on
entrated latitude 
oordinate x2 ofthe form � = x2 + 12 (1� h) sin(2x2) with h = 0:5. The grid 
overs the angular s
ale 0:02� � � � 0:98� andhas radial boundaries rmin = 0:98rBH and rmax = 120M .Figure 15 shows the mass density distribution at t=(GM=
3) = 0, 1250, and 2300 (roughly 0, 3, and6 orbits at the initial pressure maximum). For a more quantitative 
omparison, Figure 16 shows the timehistory of the mass a

retion rate through the inner radial boundary of the grid. Comparing with Figure 18of De Villiers & Hawley (2003b), we see similar amplitudes and frequen
ies of variability in the a

retion 
ow,parti
ularly for the �rst 4 orbits. We also �nd a similar value for the total mass a

retion: �M=M0 = 0:13after 6 orbits here versus 0.14 after 10 orbits in De Villiers & Hawley (2003b). The a

retion tapers o� toa low value after about 3.5 orbits as expe
ted sin
e MRI turbulen
e 
annot be sustained inde�nitely in anaxisymmetri
 simulation, due to Cowling's antidynamo theorem. Throughout this simulation the divergen
eof the magneti
 �eld is held below a tolerable limit (P j�iBij � 0:01) through the use of the divergen
e
leanser. Importantly, this divergen
e error does not in
rease with time.5. Dis
ussionWe have developed a new obje
t oriented 
ode Cosmos++ for solving the fully general relativisti
 magne-tohydrodynami
s equations on adaptive, unstru
tured meshes using dis
rete �nite volume and dimensionallyunsplit methods. Three basi
 numeri
al s
hemes have been implemented and tested using both internal andtotal 
onservative energy formulations: The �rst evolves internal energy with arti�
ial vis
osity for sho
k
apturing; the se
ond uses a nonos
illatory 
entral di�eren
e s
heme to solve the fully 
onservative (energyand momentum) form of equations; and the third approa
h 
ombines the internal and 
onservative energyequations with arti�
ial vis
osity methods to a
hieve greater a

ura
y in highly relativisti
 regimes.We �nd by 
omparing the di�erent methods presented here with other published results, in
ludingRiemann-solver based 
odes, that, despite their simpli
ity, arti�
ial vis
osity methods perform quite well forlow to moderately boosted 
ows, (V=
 ' 0:95 in the sho
k tube and wall sho
k tests). This is 
onsistentwith our 
on
lusions from earlier work using dimensionally split, �nite di�eren
e methods on stru
tured grids(Anninos & Fragile 2003). However, it is well known that for higher velo
ity 
ows, traditional AV methodstend to break down. We have demonstrated that the basi
 AV approa
h 
an be extended easily to the ultra-relativisti
 regime by simply in
orporating a dual energy formalism (the eAV method) to solve both internaland 
onservative energy equations with standard operator split pro
edures. This eAV pro
edure resultsin signi�
antly improved sho
k and wave 
apturing 
apabilities that allows AV s
hemes to model 
ows atarbitrarily high boosts. We have presented stable, a

urate solutions for strong sho
k 
ollision intera
tionswith boosts (velo
ities) easily ex
eeding 200 (0:99999
).The NOCD method implemented here, although of a slightly di�erent family of algorithms than weadopted in our previous 
ode, also works quite well in the high boost regime. In fa
t this method has signif-
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antly less numeri
al di�usion and is less sensitive to Courant restri
tions than our earlier implementation(Anninos & Fragile 2003). The eAV and NOCD methods thus provide robust alternatives to simulatinghighly relativisti
 
ows sin
e they are 
omparable in a

ura
y, over the entire range of velo
ities we havesimulated, to more 
ompli
ated Riemann-based 
odes for both hydrodynami
 and magnetohydrodynami
problems.The authors would like to thank the VisIt development team at Lawren
e Livermore National Laboratory(http://www.llnl.gov/visit/), espe
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e Foundation under the following NSFprograms: Partnerships for Advan
ed Computational Infrastru
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ale Fa
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ale Fa
ility.
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Fig. 4.| Mean relative errors in density for the AV, eAV, and NOCD methods as a fun
tion of boost forthe relativisti
 wall sho
k problem. All 
al
ulations were run using 200 zones up to time t = 2:0. The AVand eAV results 
an be improved signi�
antly and brought 
loser in alignment with the NOCD results byredu
ing the Courant fa
tor or in
reasing the vis
osity 
oeÆ
ients over the 
anoni
al values we have 
hosen.
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Fig. 5.| Density plots for di�erent infall velo
ities in the wall sho
k test using the eAV (squares) and NOCD(triangles) methods. Results for the AV method (
ir
les) are only in
luded for V = �0:9. The resolution is200 zones, the displayed time is t = 2:0, and the graphs are zoomed in at the sho
k fronts to distinguish thedi�erent solutions.
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Fig. 6.| Two ideal 
uids, ea
h with initial proper density � = 1, proper energy �� = 10�8, and � = 5=3,
ollide initially at x = 0:05. The 
uids move in opposite dire
tions, ea
h with W 0 = 5 in the 
enter-of-momentum frame. The observer is boosted to the right at W = 3 so the 
uid moves at speeds up toV=
 � 0:999, and the sho
ked 
uid region 
an be seen to move to the left over a sequen
e of �ve times, t =0.0, 0.01, 0.02, 0.03, 0.04. The numeri
al results are solid lines and show good agreement with the analyti
alsolution (Table 2) shown in dot-dashed lines. The ti
ks at the top of the plot are zone positions for the lasttime snapshot. This problem uses a base resolution of 60 zones, with eight allowed levels of mesh re�nement.
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Fig. 7.| As in Figure 6 ex
ept the two ideal 
uids have unmat
hed initial proper densities �1 = 2, �2 = 1.
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Fig. 8.| As in Figure 6 ex
ept here W 0 = 10 and the observer is boosted to the right at W = 5. The baseresolution is 60 zones and 12 levels of mesh re�nement are allowed.
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Fig. 9.| A spheri
al relativisti
 blastwave with energy EBM = 1 foe � 1051 ergs, 
BM = 30, plows into anexternal density of �BM = 1 baryon 
m�3 = 1:27 foe lightyear�3 from an initial radius rBM = 0:084 lightyear.The material immediately behind the sho
k is initially sho
ked to � = 23=2
BM�BM, 
 = 
BM=p2 and evolvesas � / 
 � 1 / r�3=2. On
e the blastwave de
elerates to 
 � 1 it transitions to the non-relativisti
 Sedov-Taylor blastwave for whi
h the sho
ked material evolves as � = �BM(� + 1)=(� � 1) = 8:9 foe lightyear�3,� = 4=3, and 
� 1 / v2 / r�3 (Landau & Lifshitz 1959). This simulation uses the NOCD method. For this�gure the dump frequen
y was halved periodi
ally to allow late time pro�les to be resolved.
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Fig. 10.| Self-similarity of the relativisti
 (left) and non-relativisti
 (right) phases of the blastwave ofFigure 9. As dis
ussed in the text, the relativisti
 (left) panel demonstrates the eAV method, while thenon-relativisti
 (right) panel uses the NOCD method. At left, the initial relativisti
 proper density pro�le,� = D=W , (dot-dashed line) of eqn. (66) is plotted with four subsequent pro�les at � 100; 000 
y
le intervals.Ea
h pro�le is s
aled in radius to align with the initial sho
k front and the density is s
aled by � / r�3=2. Savean initial de
rease in the magnitude of the peak of about 10%, and a gradual in
rease in the density of thelower velo
ity tail, the self-similar pro�le is well maintained. At right, the Sedov solution (dot-dashed line,e.g. Landau & Lifshitz 1959) with � = 4=3 is plotted with six density pro�les from the non-relativisti
 phaseof the run from Figure 9. The radii, ranging from 1 to 1.2 lightyears for times 1.33 to 2 years respe
tively,are s
aled to the radius of one lightyear. The sho
ked density � = �BM(� + 1)=(�� 1) = 8:9 foe lightyear�3is not s
aled, but is naturally 
aptured by the 
ode to within a few per
ent. The s
aled pro�les are virtuallyidenti
al to ea
h other and well reprodu
e the Sedov pro�le. Ti
k marks at the top of the plots show themesh nodes for a typi
al pro�le. The left (right) plot has 17 (8) allowed levels of re�nement.
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Fig. 11.| Tranverse velo
ity V y for two 
ases of the Alfv�en wave test: (a) 
ase A at t = 0:9 and (b) 
ase Bat t = 1:1. The numeri
al resolution is 1024 zones; the solid lines are the analyti
 solutions.
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Fig. 12.| Left panel: Magnetosoni
 sho
k tube problem 1 from Komissarov (1999). The magneti
 �eldis normal to the initial dis
ontinuity (at x = 0) so it does not play a dynami
al role. The symbols showthe numeri
al solution at t = 1 for 400 zones using the AV method. Right panel: Magnetosoni
 sho
ktube problem 2 from Komissarov (1999). The initial magneti
 �eld to the left of x = 0 is parallel to thedis
ontinuity, while the �eld is absent to the right. The symbols show the numeri
al solution at t = 1 for500 zones using the AV method.
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Fig. 13.| As Figure 12 but with the extended vis
osity (eAV) s
heme.
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Fig. 14.| As Figure 12 but with the non-os
illatory 
entral di�eren
e (NOCD) s
heme.
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Fig. 15.| Plot of gas density � at (a) t = 0, (b) t = 1250M = 3�orb, and (
) t = 2300M = 6�orb forthe Kerr-S
hild form of the metri
. The density is s
aled logarithmi
ally over 4 orders of magnitude andmaintains the same s
ale in all three panels.

Fig. 16.| Mass a

retion rate _M at the inner radial boundary rmin normalized by the initial mass of thetorus.
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Grid Method kE(�)k1 kE(P )k1 kE(V )k1400 AV 1:24� 10�1 2:78� 100 1:38� 10�2eAV 1:82� 10�1 4:23� 100 1:99� 10�2NOCD 1:69� 10�1 3:98� 100 2:00� 10�2800 AV 8:09� 10�2 1:61� 100 7:78� 10�3eAV 9:00� 10�2 2:06� 100 1:04� 10�2NOCD 1:04� 10�1 2:00� 100 1:08� 10�21600 AV 5:03� 10�2 1:01� 100 4:41� 10�3eAV 5:18� 10�2 1:01� 100 5:24� 10�3NOCD 6:59� 10�2 1:02� 100 5:80� 10�33200 AV 3:83� 10�2 7:12� 10�1 2:35� 10�3eAV 2:46� 10�2 4:85� 10�1 2:29� 10�3NOCD 3:14� 10�2 5:17� 10�1 2:71� 10�3Table 1: L-1 Norm errors in density, pressure, and velo
ity for the hydrodynami
 sho
k-tube test at timet = 0:36. Convergen
e is approximately linear as expe
ted for problems with sho
k dis
ontinuities.

�1 W1 Wr �2 Wd ed �3 Wf �4 W41.0 1.1436 5.412 14.0 3.0 56.0 14.0 1.741 1.0 28.862.0 1.1436 4.482 24.28 2.572 79.06 16.20 1.500 1.0 28.861.0 1.2558 9.973 26.5 5.0 238.5 26.5 2.565 1.0 98.74Table 2: Analyti
al results for boosted 
ollisions shown in Figs 6, 7 & 8 (see x4.1.3). Initial 
onditions aregiven by �1, W1, �4, W4. Wd is solved for by Equations (54) & (61) in the 
enter-of-momentum frame, andthen boosted into the lab frame. Sho
ked proper densities �2 and �3 are given by eqns. (56), and the properenergy density of the 
onta
t dis
ontinuity is ed = �2�2 = �3�3 with eqns. (58). The boosts of the reverseand forward sho
k fronts, Wr and Wf , are 
al
ulated from their 
enter-of-momentum velo
ities (eqn. (60)).




